
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Dakota Software Training

Parallelism

http://dakota.sandia.gov

SAND2015-6865 TR

Module Goals

 Discuss what to consider when designing a parallelized study

 Understand what Dakota provides and its limitations

 Be able to choose the best parallelism approach

 Know how to configure Dakota and your interface for your
parallelism approach

Opportunities for parallelization

Example 1: Parallel simulation

 The user’s simulation code has been parallelized using
MPI, OpenMP, GPU, etc.

Example 2: Gradient-based optimization

 Finite differencing can be performed in parallel

Example 3: Sampling

 Every sample is independent of all the others

Example 4: Multi-start optimization

 Every optimization is independent of all the others

3

M
o

re
 C

o
a

rs
e

-g
ra

in
e

d

Things to Consider

 Available Concurrency
 Adaptive vs. single pass algorithms

 Characteristics of your simulation
 Serial or parallel

 Parallel scaling/efficiency

 Memory requirements

 Duration

 Characteristics of computing resource
 Number of cores and memory

 Time limits

 On some HPCs, “fork” and “system” are disallowed

4

Local Parallelism

5

Dakota

eval.1

eval.2

eval.3

eval.4

eval.8

eval.5

eval.7

eval.6

eval.12

eval.9

eval.10

eval.11

asynchronous
 evaluation_concurr 4 eval.15

eval.13

eval.14

eval.16

time

One instance of Dakota launches multiple instances of the analysis driver

• Simple and portable

• Works with either serial or parallel

simulation codes

• Method of choice for desktop computing

• Evaluations will not be launched across

a network (Hence “local”)

• Iterators run sequentially

Serial versus Parallel Simulation

 Suppose your simulation
has been parallelized and
your workstation has 24
cores.

 Naturally, you want to use
all of them and minimize
how long your Dakota
study will take.

 Which combination is
best?

6

Evaluation

Concurrency

Cores per

Evaluation

1 24

2 12

3 8

4 6

6 4

8 3

12 2

24 1

Serial versus Parallel Simulation

 Parallel efficiency
 Fewer cores are better

 Memory requirements
 Upper limit on number of

concurrent evaluations

 Available Concurrency
 Another upper limit on

number of concurrent
evaluations

 7

Amdahl’s Law

Parallel Dakota

8

Dakota launched in parallel; each “rank” runs analysis drivers

• Still pretty simple..

• Works across the network

• Parallel iterators (experimental)

• Dakota highly configurable

• Serial simulations ONLY

• Not supported on Windows

• Dakota must be built with MPI support

• Dakota highly configurable

$ mpirun –np 4 dakota my.in

time

Dakota (rank 0)

Dakota

Dakota

Dakota

eval.1

eval.2

eval.3

eval.4

eval.8

eval.5

eval.7

eval.6

eval.12

eval.9

eval.10

eval.11

eval.15

eval.13

eval.14

eval.16

Dakota, “Large” Simulations, and HPC

How can Dakota manage evaluations that require large*, parallel
simulations on many cores?

*More than will fit on a workstation

9

Two strategies—

• Evaluation Submission

• Evaluation Tiling

Login Node

Approach 1: Evaluation Submission

Evaluation Steps

1. Dakota invokes analysis driver as
usual

2. Driver performs pre-processing

3. Driver submits a job to the
queue and waits for it to finish

4. Job starts, runs the simulation,
and finishes

5. Driver performs post-processing
and exits

6. Dakota reads results file and
continues

10

Dakota

JOB STATE

eval.1 Running

eval.2 Running

eval.3 Running

eval.4 Waiting

eval.5 Waiting

eval.6 Waiting

eval.N Waiting

…

Example Interface

Pre-processing done above (omitted)

sbatch eval.sbatch > sbatch.out

Wait until the batch job finishes before
continuing.

jobid=$(tail -1 sbatch.out | egrep -o '[0-9]+')

while [$(squeue -j $jobid | wc -l) -ne 0];

do

 sleep 300

done

Post-processing done below (omitted)

#!/bin/bash

#SBATCH --nodes=64

#SBATCH --time=08:00:00

#SBATCH --account=my_account

#SBATCH --job-name=eval.1

module load my_simulation

mpirun –np 1024 my_simulation

11

Analysis driver snippet eval.sbatch

Instead of waiting

When using ‘single-pass’ methods, Dakota can be run in two
steps

 Step 1: Job Creation
 Analysis driver set up to submit jobs then immediately exit, returning

“dummy” values to Dakota

 Step 2: Data Collection (after all jobs have finished)
 Analysis driver set up to post-process and return real result to Dakota

Tip: Dakota must generate the same parameters in both steps.
For stochastic methods use the seed keyword.

12

Recommended Dakota Input

interface

 analysis_driver "driver.sh"

 fork

 asynchronous

 evaluation_concurrency 20

 allow_existing_results

 work_directory "runs/run"

 directory_tag

 directory_save

 13

Submit multiple jobs

Prevent Dakota from

erasing existing results

Keep simulation run files

separate from one another

and preserve run folders

Approach 2: Evaluation Tiling

14

Compute Nodes

eval.1

Dakota

eval.2

eval.3

eval.4

eval.5

eval.6

eval.7

eval.8

…

time

4 nodes

One submitted job

Evaluation Steps

1. Dakota invokes analysis driver as usual

2. Driver performs pre-processing

3. Driver determines node placement (if
necessary)

4. Driver launches parallel simulation

5. Driver performs post-processing and
exits

6. Dakota reads results file and continues

Node Placement Methods

Automatic tiling
 just launch (srun, aprun)

Relative node list or Machine files
 Compute list of relative nodes based on—

 Number of nodes in allocation

 Number of MPI tasks per node

 Number of MPI tasks per simulation run

 evaluation number (obtain from e.g. file_tag)

 Then launch simulation with relative node list option (-host) or
machinefile option (-machinefile)

 Use local_evaluation_scheduling static

 Examples in

 examples/Case3_OpenMPI/

 examples/Case3_MachinefileMgmt/

15

Example Analysis Driver
Pre-processing done above (omitted)

APPLIC_PROCS=2

Simple case: srun –n $APPLIC_PROCS my_simulation

num=$(echo $params | awk -F. '{print $NF}')

CONCURRENCY=4

PPN=16

applic_nodes=$(((APPLIC_PROCS+PPN-1) / PPN))

relative_node=$(((num - 1) % CONCURRENCY * APPLIC_PROCS / PPN))

node_list="+n${relative_node}"

for node_increment in $(seq 1 $((applic_nodes - 1))); do

 node_list="$node_list,+n$((relative_node + node_increment))"

done

mpirun -np $APPLIC_PROCS -host $node_list my_simulation

sleep 30

Post-processing done below (omitted)

16

No. procs/simulation

No. concurrent

evaluations

Procs per node

No. nodes required by

simulation

0-based index of

starting node

List of nodes where

simulation will run

Recommended Dakota Input

interface

 analysis_driver "driver.sh"

 fork

 asynchronous

 evaluation_concurrency 4

 local_evaluation_scheduling static

 file_tag

 work_directory "runs/run"

 directory_tag directory_save

17

Run multiple concurrent

evaluations

Use static scheduling

Keep simulation run files

separate from one another

and preserve run folders

File tagging to extract

evaluation number

Tiling versus Submission

Consider submission when..

 Memory or core count
requirements are large

 Fork/system is disallowed
on the compute nodes

Consider tiling when..

 Memory or core count
requirements are modest

 Using an adaptive method

18

Examples and Documentation

 Examples folder (examples/parallelism)

 User’s Manual (Chapter 17)

 Note: In these resources, running Dakota in parallel is
referred to as “Case 1” parallelism, Evaluation Submission is
“Case 4,” and Evaluation Tiling is “Case 3.” (Sorry.)

19

